A. Conceptual Questions

1. Why is the value of slope equal to 0 at turning point? Use diagram(s) to explain your answer.
2. What does second-order derivative measure? Explain the following behavior using appropriate graphs:

- Increasing at an increasing rate
- Increasing at a decreasing rate
- Decreasing at an increasing rate
- Decreasing at a decreasing rate

3. What is the difference between concavity/convexity and strict concavity/strict convexity? Use graphs to explain the differences.

B. Optimization with sketching

Use optimization to sketch the following quadratic functions:

1. $y=6 x^{2}+19 x+10$
2. $y=6 x^{2}-13 x+6$
3. $y=5 x^{2}+3 x-2$
4. $y=14 x^{2}+9 x+1$
5. $q=6 p^{2}+11 p-10$
6. $y=x^{2}-4 x-12$
7. $y=2 x^{2}+5 x-3$
C. Optimization problems
8. A manufacturer of men's shirts determines that her costs will be 500 dollars for overhead plus 9 dollars for each shirt made. Her accountant has estimated that her selling price p should be determined by:
$p=30-0.2 \sqrt{x}$ where x is the number of shirts sold.
Maximize their profit function.
9. It is estimated that the cost of constructing an office building that is n floors high is $c(n)=2 n^{2}+$ $500 n+600$ thousand dollars. How many floors should the building have in order to minimize the average cost per floor? (Answer: 17 floors)
10. Maximize the profit function for Firm A where the total revenue is $R(q)=5 q-0.003 q^{2}$ and $C(q)=300+1.1 q$. Sketch the profit function clearly identifying the turning point.
11. HARD: A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area? (Hint: Sketch a picture of the fence.)
12. HARD: We have a piece of cardboard that is 14 in by 10 in and we're going to cut out the corners as shown below and fold up the sides to form a box, also shown below. Determine the height of the box that will give a maximum volume.

