1. Firm A's cost function is $C\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+6 x_{1}+6 x_{2}^{2}$, where x_{1} and x_{2} denote the quantities of good 1 and good 2 produced. The firm has to meet a combined production target of 50 units. Find the values of x_{1} and x_{2} that will minimize the cost using Lagrange Multiplier Method. Verify your results using a Bordered Hessian.
2. A consumer wants to maximize his/her utility. The consumer's utility function is given by $U(x 1, x 2)=2 \times 1 \times 2+3 \times 1$ where $x 1$ and $x 2$ denote the number of good 1 and good 2 purchased. The budget constraint is given as $P_{x 1} x_{1}+$ $P_{x 2} x_{2}=83$ where the price is $P_{x 1}=\$ 1$ and $P_{x 2}=\$ 2$.
(a) Form the lagrangian function and find the critical values of $x 1$, and $\times 2$
(b) Using the bordered Hessian matrix, check if the utility is maximized subject to the budget constraint.
3. Evaluate the following integrals:
(a) $\int \ln x d x$ (use Integration by parts, where $v=\ln \mathrm{x}$)
(b) $\int x^{3} \ln x d x$ (use Integration by parts)
(c) $\int \frac{e^{x}}{1+e^{x}} d x$ (use substitution)
(d) $\int_{0}^{3}(x+3)(x+2)^{-4} d x$ (use integration by parts)
(e) $\int_{0}^{1} x \sqrt{1-x} d x \quad$ (use integration by parts)
(f) $\int \frac{6 x}{x^{2}+1} d x$ (use substitution)
(g) $\int x\left(x^{2}+1\right)^{10} d x$ (use substitution)

4. Find Area A.

5. Minimize Firm A's total costs $c=45 x^{2}+90 x y+90 y^{2}$ when the firm has to meet a production quota g equal to $2 x+3 y=60$. Use Lagrangian method to find critical values and verify your answer by Bordered Hessian.
6. Consider the Cobb-Douglas production function: $Q=20 K^{1 / 2} L^{1 / 2}$
(a) Prove that the production function is linearly homogenous.
(b) Prove the three properties of linearly homogenous production function for the given CobbDouglas function.
7. Consider the Cobb-Douglas production function: $Q=20 K^{3 / 4} L^{1 / 4}$
(a) Prove that the production function is linearly homogenous.
(b) Prove the three properties of linearly homogenous production function for the given CobbDouglas function.
8. Consider the following production function:

$$
Q=\frac{K^{2}-L^{2}}{L}
$$

(a) Show that the function is linearly homogenous.
(b) Prove the three properties of linearly homogenous production functions.
9. Consider the following production function:

$$
Q=K+\frac{L^{3}}{K^{2}}
$$

(c) Show that the function is linearly homogenous.
(d) Prove the three properties of linearly homogenous production functions.

