BUS 135 Applied Mathematics

Sample Midterm 1 Exam
A. Sketch the following functions and inequalities:

1. $y=4$
2. $x+y=-7$
3. $2 x+y=-1$
4. $-4 x=5+y$
5. $y=-2 x-4$
6. $3 y=-24$
7. $2 x+4 y=-3$
8. $5 y=8$
9. $-6 y=8+4 x$
10. $y=\frac{3}{11} x+\frac{10}{11}$
11. $y=-x-1$
12. $y=-x-\frac{1}{2}$
13. $y \geq 4 x-4$
14. $y \leq \frac{5}{2} x+2$
15. $y \geq-\frac{7}{5} x-3$
16. $y \geq-\frac{3}{4} x+4$
B. Multiple inequalities sketching
17. On the grid, shade the region that satisfies all three of these inequalities
$y>-4$
$x<2$
$y<2 x+1$

18. The region \mathbf{R} satisfies the inequalities

$$
x \geq 2, \quad y \geq 1, \quad x+y \leq 6
$$

On the grid below, draw straight lines and use shading to show the region \mathbf{R}.

Use Cramer's Rule to solve each system.

1) $x-5 y=-5$
$-4 x-2 y=20$
2) $-x+5 y=2$
$x-2 y=-2$
3) $2 x+2 y=0$
$4 x-y=-20$
4) $3 x-4 y=1$
$-5 x+2 y=3$
5) $-x-y=-1$ $3 x+3 y=3$
6) $-5 x+5 y=10$
$-2 x+2 y=-4$

D. Linear Programming

*Practice the problems recommended from the textbook first, and then attempt to solve this problem:
Maximize $z=(x-45)+(y-5)$ subject to the following contraints (i) $50 x+24 y \leq 2400$ (ii) $30 x+33 y \leq$ 2100 (iii) $x \geq 45$ and (iv) $y \geq 5$

E. Limit and Continuity

Below is the graph of $f(x)$. For each of the given points, clearly state if the limit $\lim _{x \rightarrow a} f(x)$ exists and if the function is continuous. (The circles that are filled indicate there is no break/gap at that point. The circles that are hollow indicate breaks/gaps at those points)
(a) $a=-3$
(b) $a=-1$
(c) $a=2$
(d) $a=4$

Consider the following graph below:

* The hollow circle indicates there is a gap/break in the function at that point.
A) Is the function continuous at $=-1$?
B) Is the function continuous at $=1$?

Evaluate the following limits:
3. $\lim _{x \rightarrow 2} x(x-1)(x+1)$

ब. $\lim _{x \rightarrow 3} x^{3}-3 x^{2}+9 x$
9. $\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{2}-3 x-4}$
10. $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}+x-6}$
11. $\lim _{x \rightarrow-1} \frac{2 x^{2}+x-1}{x+1}$
12. $\lim _{x \rightarrow 1} \frac{3 x^{2}-x-2}{2 x^{2}+x-3}$
5. $\lim _{x \rightarrow 3} \frac{x^{2}-2 x}{x+1}$
7. $\lim _{x \rightarrow 1^{+}} \frac{x^{4}-1}{x-1}$ 23. $\lim _{y \rightarrow 6} \frac{y+6}{y^{2}-36}$ 26. $\lim _{x \rightarrow 4} \frac{3-x}{x^{2}-2 x-8}$
29. $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
30. $\lim _{y \rightarrow 4} \frac{4-y}{2-\sqrt{y}}$
F. Differentiation
81. Find $\frac{d y}{d x}$ for the following:
a) $y=\frac{1}{x}$
b) $y=\frac{1}{x+1}$
c) $y=x^{2}-x$
d) $y=x^{4}$
e) $y=\frac{1}{\sqrt{x}}$
f) $y=\frac{1}{\sqrt{x-1}}$
g) $y=2 x^{2}$
h) $y=\frac{1}{x^{2}}$
i) $y=x^{3}$
j) $y=2 x^{3}+1$
k) $y=\sqrt{x+1}$
l) $y=\sqrt{2 x^{3}+1}$

Find $f^{\prime}(x)$ of the following:
a) $f(x)=x^{3}+5$
b) $f(x)=x^{2}\left(x^{3}+5\right)$
c) $f(x)=\frac{x^{3}+5}{2}$
e) $f(x)=x^{-3}+\frac{1}{x^{7}}$
g) $f(x)=\sqrt[3]{\frac{8}{x}}$
d) $f(x)=\frac{x^{3}+5}{x^{2}}$

Find $\frac{d y}{d x}$ of the following:
a) $y=1+x+x^{2}+x^{3}+x^{4}+x^{5}$
b) $y=\frac{1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}}{x^{3}}$
C) $y=(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \rightarrow$
d) $y=x^{24}+2 x^{12}+3 x^{8}+4 x^{6}$

Q9. Use the Product Rule or Quotient Ruler for the following
a) $f(x)=\left(3 x^{2}+6\right) \cdot\left(2 x-\frac{1}{4}\right)$
b) $f(x)=\left(2-x-3 x^{3}\right) \cdot\left(7+x^{5}\right)$
c) $f(x)=\left(x^{3}+7 x^{2}-8\right)\left(2 x^{-3}+x^{-4}\right)$
d) $f(x)=\left(\frac{1}{x}+\frac{1}{x^{2}}\right) \cdot\left(3 x^{3}+27\right)$
le) $f(x)=\frac{3 x+4}{x^{2}+1}$
f) $f(x)=\frac{x-2}{x^{4}+x+1}$
g) $f(x)=\frac{x^{2}}{3 x-4}$
n) $f(x)=\frac{2 x^{2}+5}{3 x-4}$

Q10. Use the chain Rule for the following: [Find $\frac{d y}{d x}$]
a) $y=\left(x^{7}+2 x-3\right)^{3} 3 x^{2}-\frac{d x}{d x}$
b) $y=\left(x^{2}+1\right)^{4}$
a) $y=\left(x^{3}+2 x\right)^{37} d x$
d) $y=\left(3 x^{2}+2 x-1\right)^{6}$
e) $y=\left(x^{3}-\frac{7}{x}\right)^{-2}$
f) $y=\frac{1}{\left(x^{5}-x+1\right)^{9}}$
g) $y=\frac{4}{\left(3 x^{2}-2 x+1\right)^{3}}$
h) $y=\sqrt{x^{3}-2 x+5}$
i) $y=\left(\frac{x-5}{2 x+1}\right)^{3}$
$\sqrt{ }$ j) $y=\left(\frac{1+x^{2}}{1-x^{2}}\right)^{17}$
k) $y=\frac{(2 x+3)^{3}}{\left(4 x^{2}-1\right)^{8}}$
l) $y=x^{2} \sqrt{5-x^{2}}$

Find the partial derivatives of the following equations:
Q3. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:
a) $z=\frac{x y}{x^{2}+y^{2}}$
b) $z=\frac{x^{2} y^{2}}{x+y}$

Q4. Find $f_{x}(x, y)$ and $f_{y}(x, y)$:
a) $f(x, y)=3 x^{4} y-7 x^{3} y$
b) $f(x, y)=\frac{x+y}{x-y}$

Q5. Evaluate the indicated partial derivative:

$$
f(x, y)=9-x^{2}-7 y^{3} ; f_{x}(4,1) \text { and } f_{y}(4,1)
$$

Q6. Let $f(x, y, z)=x^{2} y^{4} z^{3}+x y+z^{2}+1$. Find:
a) $f_{x}(x, y, z)$
b) $f_{y}(x, y, z)$
c) $f_{z}(x, y, z)$

