BUS 135 Applied Mathematics

Sample Midterm 1 Exam

A. Sketch the following functions and inequalities:

1.
$$y = 4$$

2.
$$x + y = -7$$

3.
$$2x + y = -1$$

4.
$$-4x = 5 + y$$

5.
$$y = -2x - 4$$

6.
$$3y = -24$$

7.
$$2x + 4y = -3$$

8.
$$5y = 8$$

9.
$$-6y = 8 + 4x$$

10.
$$y = \frac{3}{11}x + \frac{10}{11}$$

11.
$$y = -x - 1$$

12.
$$y = -x - \frac{1}{2}$$

13.
$$y \ge 4x - 4$$

14.
$$y \le \frac{5}{2}x + 2$$

15.
$$y \ge -\frac{7}{5}x - 3$$

16.
$$y \ge -\frac{3}{4}x + 4$$

B. Multiple inequalities sketching

1. On the grid, shade the region that satisfies all three of these inequalities

y > -4

 $x < 2 \qquad y < 2x + 1$

2. The region R satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$,

$$x + y \le 6$$

On the grid below, draw straight lines and use shading to show the region R.

Use Cramer's Rule to solve each system.

1)
$$x - 5y = -5$$

 $-4x - 2y = 20$

2)
$$-x + 5y = 2$$

 $x - 2y = -2$

3)
$$2x + 2y = 0$$

 $4x - y = -20$

4)
$$3x - 4y = 1$$

 $-5x + 2y = 3$

5)
$$-x - y = -1$$

 $3x + 3y = 3$

6)
$$-5x + 5y = 10$$

 $-2x + 2y = -4$

D. Linear Programming

*Practice the problems recommended from the textbook first, and then attempt to solve this problem:

Maximize z = (x - 45) + (y - 5) subject to the following contraints (i) $50x + 24y \le 2400$ (ii) $30x + 33y \le 2100$ (iii) $x \ge 45$ and (iv) $y \ge 5$

E. Limit and Continuity

Below is the graph of f(x). For each of the given points, clearly state if the limit $\lim_{x\to a} f(x)$ exists and if the function is continuous. (The circles that are **filled** indicate there is **no break/gap** at that point. The circles that are **hollow** indicate **breaks/gaps** at those points)

(a)
$$a = -3$$

(b)
$$a = -1$$

(c)
$$a = 2$$

(d)
$$a = 4$$

Consider the following graph below:

* The hollow circle indicates there is a gap/break in the function at that point.

A) Is the function continuous at =-1?

B) Is the function continuous at = 1?

Evaluate the following limits:

3.
$$\lim_{x \to 2} x(x-1)(x+1)$$
4. $\lim_{x \to 3} x^3 - 3x^2 + 9x$

9. $\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$
10. $\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 + x - 6}$
11. $\lim_{x \to -1} \frac{2x^2 + x - 1}{x + 1}$
12. $\lim_{x \to 1} \frac{3x^2 - x - 2}{2x^2 + x - 3}$

5.
$$\lim_{x \to 3} \frac{x^2 - 2x}{x + 1}$$
7. $\lim_{x \to 1^+} \frac{x^4 - 1}{x - 1}$ 23. $\lim_{y \to 6} \frac{y + 6}{y^2 - 36}$ 26. $\lim_{x \to 4} \frac{3 - x}{x^2 - 2x - 8}$

29.
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$
 30. $\lim_{y \to 4} \frac{4-y}{2-\sqrt{y}}$

F. Differentiation

Find f'(x) of the following:

a)
$$f(x) = x^3 + 5$$
b) $f(x) = x^2 (x^3 + 5)$
c) $f(x) = \frac{x^3 + 5}{2}$
d) $f(x) = \frac{x^3 + 5}{2}$
e) $f(x) = \frac{x^3 + 1}{2}$
f) $f(x) = \sqrt{x} + \frac{1}{2}$
g) $f(x) = \sqrt{x}$
h) $f(x) = \frac{x^{3/2} + 1}{2}$
n) $f(x) = \frac{x^{3/2} + 1}{2}$

Find $\frac{dy}{dx}$ of the following:

a)
$$y = 1 + x + x^2 + x^3 + x^4 + x^5$$

b) $y = \frac{1 + x + x^2 + x^3 + x^4 + x^5 + x^6}{x^3}$
 $y = (1-x)(1+x)(1+x^2)(1+x^4)$
a) $y = x^4 + 2x^2 + 3x^8 + 4x^6$

99. Use the Product Rule or Guotient Rules for the following
$$f(x) = (3x^2 + 6) \cdot (2x - \frac{1}{4})$$
 b) $f(x) = (2 - 2 - 3x^3) \cdot (7 + x^5)$ c) $f(x) = (x^3 + 7x^2 - 8)(2x^3 + x^4)$ d) $f(x) = (\frac{1}{2} + \frac{1}{2}x) \cdot (3x^3 + 27)$ de) $f(x) = \frac{3x + 4}{x^2 + 1}$ f) $f(x) = \frac{x - 2}{x^4 + 2x + 1}$ g) $f(x) = \frac{x^2}{3x - 4}$ fn) $f(x) = \frac{3x^2 + 5}{3x - 4}$ g) $f(x) = \frac{x^2}{3x - 4}$ fn) $f(x) = \frac{3x^2 + 5}{3x - 4}$ g) $f(x) = \frac{x^2}{3x - 4}$ g) $f(x) = \frac{x^3 + 2x^3}{3x - 4}$ g)

Find the partial derivatives of the following equations:

33. Find
$$\frac{\partial^2}{\partial x}$$
 and $\frac{\partial^2}{\partial y}$:

a) $2 = \frac{2xy}{2x^2 + y^2}$

b) $2 = \frac{2x^2y^2}{2x + y}$

34. Find $f_{x}(x,y)$ and $f_{y}(x,y)$:

a) $f(x,y) = 3x^2y - 7x^2y$
b) $f(x,y) = \frac{2x + y}{x - y}$

95. Evaluate the indicated partial derivative: $f(x,y) = 9 - x^2 - 7y^3; f_{x}(4,1) \text{ and } f_{y}(4,1)$ $f(x,y) = 2x^2 + 2x^3 + 2xy + 2x^2 + 1. \text{ find:}$ 96. Let $f(x,y,z) = 2x^2y^4z^3 + 2xy + 2x^2 + 1. \text{ find:}$ a) $f_{x}(x,y,z)$ b) $f_{y}(x,y,z)$ c) $f_{z}(x,y,z)$