Optimize the following functions. Determine whether the turning points correspond to maximum/minimum/inflection point using first derivative and second derivative tests (both test should give you the same results):

1. $y=f(x)=2 x^{3}-30 x^{2}+126 x+59$
2. $y=f(x)=x^{4}-6 x^{3}+4 x^{2}-13$
3. $y=-2 x^{3}+15 x^{2}+84 x-25$

Optimize the following function and apply Nth derivative test to determine if the function attains a relative maximum, minimum or possible inflection point:

1) $y=f(x)=-(x-8)^{4}$
2) $y=f(x)=-2(x-6)^{6}$

Maximize the profits for a firm, given total revenue $R=4000 Q-33 Q^{2}$ and total $\operatorname{cost} C=2 Q^{3}-$ $3 Q^{2}+400 Q+5000$.

