Hypothesis Testing for Population Mean (μ)

Case 1:

- Population mean is unknown
- Population standard deviation is known
- Sample size < 30
- Population is normally distributed

In this case, we can use normal distribution to run the hypothesis test

Case 2:

- Population mean is unknown
- Population standard deviation is known
- Sample size >= 30
- Population may or may not be normally distributed

In this case, we can use normal distribution to run the hypothesis test

Case 3:

- Population mean is unknown
- Population standard deviation is known
- Sample size < 30
- Population is not normally distributed

In this case, use non-parametric method.

Methods to run hypothesis test

There are two ways to run a hypothesis test.

- 1) Rejection region approach
- 2) P-value approach

For **Cases 1 and 2**, we use normal distribution to run the hypothesis test.

Suppose sample mean = \bar{x} . We first have to standardize this value:

$$Z_{\bar{X}} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Significance level in hypothesis testing is the probability of falling into the rejection region: α (usually very small, like 0.1, 0.05, 0.025..)

Left-tailed test

Rejection Region Approach

We reject the null hypothesis if the sample mean \bar{x} is less than equal to a threshold value \bar{x}_L . In a left-tailed test, \bar{x}_L lies on the left tail of the normal distribution. To find \bar{x}_L we need to find the z-critical value from the normal distribution table.

- 1. Find the z-critical value that has an area of α to the **left**.
- 2. Convert the z-critical value into \bar{x}_L . (use standardization formula backward)
- 3. Compare \overline{x} to \overline{x}_L . Compare $Z_{\overline{X}}$ to the z-critical value.

Rejection Rule for left tailed test:

Reject H_0 if $\overline{X} \leq \overline{X}_L$

Do not reject H_0 if $\overline{x} > \overline{x}_L$

OR

Reject H_0 if $Z_{\bar{X}} \leq z$ critical value

Do not reject H_0 if $Z_{\bar{X}} > z$ critical value

• P-value Approach

For left tailed test, find the area to the left of $Z_{\bar{X}}$

Reject H_0 if p-value < α Do not reject H_0 if p-value > α

Right-tailed test

• Rejection Region Approach

We reject the null hypothesis if the sample mean \bar{x} is greater than equal to a threshold value \bar{x}_L . In a right-tailed test, \bar{x}_L lies on the right tail of the normal distribution. To find \bar{x}_L we need to find the z-critical value from the normal distribution table.

- 1. Find the z-critical value that has an area of α to the **right**
- 2. Convert the z-critical value into \bar{x}_L (use standardization formula backward)
- 3. Compare \overline{x} to \overline{x}_L . Compare $Z_{\overline{X}}$ to the z-critical value.

Rejection Rule for right tailed test:

Reject H_0 if $\overline{x} \ge \overline{x}_L$ Do not reject H_0 if $\overline{x} < \overline{x}_L$ OR Reject H_0 if $Z_{\overline{X}} \ge z$ critical value Do not reject H_0 if $Z_{\overline{X}} < z$ critical value

• P-value Approach

For a right-tailed test, p-value is the area to the right of $Z_{\bar{X}}$.

Reject H_0 if p-value < α

Do not reject H_0 if p-value > α

Two-tailed test

- Rejection Region Approach
- 1. Find two z-critical values. One that has an area of $\alpha/2$ to the **right**, and one that has an area of $\alpha/2$ to the **left**.
- 2. Compare $Z_{\bar{X}}$ to the z-critical values

Rejection Rule:

Reject H_0 if $\bar{x} \le \bar{x}_1$ or $\bar{x} \ge \bar{x}_2$ Do not reject H_0 if $\bar{x}_1 < \bar{x} < \bar{x}_2$ OR Reject H_0 if $Z_{\bar{X}} \le z_1$ or if $Z_{\bar{X}} \ge z_2$ Do not reject H_0 if $z_1 < Z_{\bar{X}} < z_2$

• P-value Approach

For two-tailed tests, p-value is calculated as follows:

If $Z_{\bar{X}} < 0$, then p-value is $2 \times P(Z < Z_{\bar{X}})$ If $Z_{\bar{X}} > 0$, then p-value is $2 \times P(Z > Z_{\bar{X}})$ Reject H_0 if p-value $< \alpha$ Do not reject H_0 if p-value $> \alpha$